Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Soil microbes play a crucial role in the carbon (C) cycle; however, they have been overlooked in predicting the terrestrial C cycle. We applied a microbial-explicit Earth system model – the Community Land Model-Microbe (CLM-Microbe) – to investigate the dynamics of soil microbes during 1901 to 2016. The CLM-Microbe model was able to reproduce the variations of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR) and soil (SR) respiration, microbial (MBC) biomass C in fungi (FBC) and bacteria (BBC) in the top 30 cm and 1 m, and dissolved (DOC) and soil organic C (SOC) in the top 30 cm and 1 m during 1901–2016. During the study period, simulated C variables increased by approximately 12 PgC yr−1 for HR, 25 PgC yr−1 for SR, 1.0 PgC for FBC and 0.4 PgC for BBC in 0–30 cm, and 1.2 PgC for FBC and 0.7 PgC for BBC in 0–1 m. Increases in microbial C fluxes and pools were widely found, particularly at high latitudes and in equatorial regions, but we also observed their decreases in some grids. Overall, the area-weighted averages of HR, SR, FBC, and BBC in the top 1 m were significantly correlated with those of soil moisture and soil temperature in the top 1 m. These results suggested that microbial C fluxes and pools were jointly governed by vegetation C input and soil temperature and moisture. Our simulations revealed the spatial and temporal patterns of microbial C fluxes and pools in response to environmental change, laying the foundation for an improved understanding of soil microbial roles in the global terrestrial C cycle.more » « less
-
Abstract Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2and CH4fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2emission is more related to plant input than CH4production and emission. The stable and substantial CH4emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 °C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2and CH4emissions. Although hydrology continued to be the primary factor influencing CH4emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2and CH4emissions.more » « less
-
We applied a microbial-explicit model – the CLM-Microbe – to investigate the dynamics of C in vegetation, litter, soil, and microbes during 1901-2016. The CLM-Microbe model was able to reproduce global averages and latitudinal trends of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR) and soil (SR) respiration, biomass C in fungi (FBC) and bacteria (BBC) in the top 30 cm and 1 m, dissolved (DOC) and soil organic C (SOC) in the top 30 cm and 1 m. In addition, the CLM-Microbe model captured the grid-level variation in GPP (R2=0.78), NPP (R2=0.63), SR (R2=0.26), HR (R2=0.23), DOC in 0-30 cm (R2=0.2) and 0-1 m (R2=0.22), SOC in 0-30 cm (R2=0.36) and 0-1 m (R2=0.26), FBC (R2=0.22) and BBC (R2=0.32) in 0-30 cm, and MBC in 0-1 m (R2=0.21). From the 1900s to 2007-2016, simulated C variables increased by approximately 30 PgC yr-1 for GPP, 15 PgC yr-1 for NPP, 12 PgC yr-1 for HR, 25 PgC yr-1 for SR, 1.0 PgC for FBC and 0.4 PgC for BBC in 0-30 cm, 1.5 PgC for FBC, 0.8 PgC for BBC, 2.5 PgC for DOC, 40 PgC for SOC, and 5 PgC for litter C in 0-1 m, and 40 PgC for vegetation C. The relative increases in C fluxes and pools varied across the globe. Increases in vegetation C were closely related to warming and increased precipitation, while C accumulation in microbes and soils was jointly governed by vegetation C input and soil temperature and moisture.more » « less
An official website of the United States government

Full Text Available